Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) Elija una de las dos opciones propuestas y conteste los ejercicios de la opción elegida.
- c) En cada ejercicio, parte o apartado se indica la puntuación máxima que le corresponde.
- d) Puede usar una calculadora no programable y no gráfica.
- e) Si obtiene resultados directamente con la calculadora, explique con detalle los pasos necesarios para su obtención sin su ayuda. Justifique las respuestas.

OPCIÓN A

EJERCICIO 1

(3 puntos) Una pastelería elabora dos tipos de trufas, dulces y amargas. Cada trufa dulce lleva 20 g de cacao, 20 g de nata y 30 g de azúcar y se vende a 1 euro la unidad. Cada trufa amarga lleva 100 g de cacao, 20 g de nata y 15 g de azúcar y se vende a 1.3 euros la unidad.

En un día, la pastelería sólo dispone de 30 kg de cacao, 8 kg de nata y 10.5 kg de azúcar. Sabiendo que vende todo lo que elabora, calcule cuántas trufas de cada tipo deben elaborarse ese día, para maximizar los ingresos, y determine dichos ingresos.

EJERCICIO 2

Calcule las derivadas de las siguientes funciones (no es necesario simplificar el resultado) :

a) (0.75 puntos)
$$f(x) = \frac{3x - 1}{x} - (5x - x^2)^2$$
.
b) (0.75 puntos) $g(x) = (x^2 - 1) L(x)$
c) (0.75 puntos) $h(x) = 2^{5x}$.
d) (0.75 puntos) $i(x) = (x^3 - 6x) . (x^2 + 1)^3$.

b) (0.75 puntos)
$$g(x) = (x^2 - 1).L(x)$$

c) (0.75 puntos)
$$h(x) = 2^{\frac{2}{5x}}$$
.

d) (0.75 puntos)
$$i(x) = (x^3 - 6x).(x^2 + 1)^3$$

EJERCICIO 3

Parte I

Consideramos el experimento aleatorio de lanzar dos dados distintos y anotar el producto de sus puntuaciones.

- a) (1 punto) ¿Cuál es la probabilidad de que dicho producto sea igual a 6?
- b) (1 punto) Si sabemos que el producto ha sido 4, ¿cuál es la probabilidad de que hayan salido los dos dados con la misma puntuación?

Parte II

Dada la población de elementos {3, 4, 5, 8}, se pretende seleccionar una muestra de tamaño 2, mediante muestreo aleatorio con reemplazamiento.

- a) (0.5 puntos) Escriba todas las muestras posibles.
- b) (0.75 puntos) Calcule la varianza de la población.
- c) (0.75 puntos) Calcule la varianza de las medias muestrales.

OPCIÓN B

EJERCICIO 1

(3 puntos) De una matriz A se sabe que su segunda fila es (-1 2) y su segunda columna es $\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$

Halle los restantes elementos de *A* sabiendo que $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$ $A = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$.

EJERCICIO 2

De una función f se sabe que su función derivada es f '(x) = $3x^2 - 9x + 6$.

- a) (1.5 puntos) Estudie la monotonía y la curvatura de f.
- b) (1.5 puntos) Sabiendo que la gráfica de f pasa por (0, 1), calcule la ecuación de la recta tangente en dicho punto.

EJERCICIO 3

Pa<u>rte I</u>

En una ciudad, el 40% de sus habitantes lee el diario A, el 25% lee el diario B y el 50% lee al menos uno de los dos diarios.

- a) (0.5 puntos) Los sucesos "leer el diario A" y "leer el diario B" ¿son independientes?
- b) (0.5 puntos) Entre los que leen el diario A, ¿qué porcentaje lee también el diario B?
- c) (0.5 puntos) Entre los que leen, al menos, un diario ¿qué porcentaje lee los dos?
- d) (0.5 puntos) Entre los que no leen el diario A, ¿qué porcentaje lee el diario B?

Parte II

El número de horas semanales que los estudiantes de Bachillerato de una ciudad dedican al deporte se distribuye según una ley Normal de media 8 y varianza 7.29.

- a) (0.5 puntos) Para muestras de tamaño 36, indique cuál es la distribución de las medias muestrales.
- b) (1.5 puntos) ¿Cuál es la probabilidad de que la media de una muestra de tamaño 36 esté comprendida entre 7.82 y 8.36 horas?